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Chapter 1

Introduction

1.1 What is Cryptography?

Cryptography comes from the Greek words kryptos, meaning hidden, and graphia, meaning writ-
ing. It is the practice of concealing information and as an academic discipline build solidly upon
mathematics and computer science. Encryption is the cryptographic operation dealing with the
actual transformation of information, to render it hidden in some sense, whereas decryption is
the reverse operation. Cryptography is an ancient art that has in recent years blossomed into a
rigorous subject, withstanding both wide publicity and expert scrutiny. This runs counter to the
historical account of cryptography as a practice based entirely on secrecy, for it did not use to be
this way.

Dating all the way back to Julius Caesar, we find examples of cryptography in practice. We will
discuss these methods in more detail later, but generally they are to cryptography today no more
than pig-latin is to English. They remain as simple methods that are easy to remember, and rely
entirely on the secrecy of the method.

Modern cryptography must obey the following well known principle [8] lest implementing pro-
grammers can go mad with power.

Definition 1.1. (Kerchoff’s Principle) The security of a cryptosystem must not depend on keeping
the cryptographic algorithms secret, the security must only depend the secrecy of the key.

Currently, this key allowing the decryption operation to be performed can take the form of an
electronic unit supplied by a bank, or a remembered password. However, in most cases you will
probably not have any idea of what it is. Our electronic lives are actually infused with crypto-
graphic methods of such complexity, that they transcended the need for human interaction.

This statement may sound outlandish, and it is why we have chosen this topic. To demonstrate
that it is indeed possible to operate such machinery with minimal interaction from the user, we
will explore the mathematics behind some of the most commonly used cryptographic methods,
as well as examining a promising candidate.

While cryptography may seem like a very well understood problem, there are in fact many pitfalls
surrounding implementation. In particular, when the underlying device contains security flaws,
or when the implementations feature seemingly innocuous error messages that can cleverly be
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used to verify decryptions, i.e. act as a decryption oracle. For an interesting, but more advanced
account on modern pitfalls in cryptography, we refer to the Nate Lawson’s insightful presentation
in [16]. An interesting analogy from this is worth noting: ”crypto is strong, but it is fragile. Think
of it like carbon fiber; if you bend it the right way it snaps.”

It is for these reasons that more sophisticated notions the security of cryptographic systems
have recently been invented. If a system can withstand more sophisticated attacks, then ideally
it should be harder to make errors in the implementation stage. Although the ideas of secu-
rity proofs are relatively new, even for a young subject like computer aided cryptography, they
have become widely popular. This is because they allow results to come about more easily in
a simplified model, under the assumption that one or two problems are hard to solve. Clearly,
the use of a simplified model has negative implications in this context. Essentially, they boil
down to saying that a system is hard to invert, unless someone finds a way to do it, in which case
it isn’t. By proving something mathematically, we do not usually expect this kind of ambivalence.

It is therefore natural to follow the standard of stating the assumptions made about each system as
simply and concisely as possible, in the interest to further their study, and to consequently either
increase their believed veracity, or to reject them. Koblitz has an interesting historical account
on the topic of security proofs here [1], and a more technical one here [17] for the interested reader.

Before we get started, it is important to note that cryptography is a vast subject. There is an
enormous amount of papers being released on evermore complicated cryptographic schemes and
methods, necessitated by a growing need for better security. Thus, in the interest of talking more
solidly about certain parts, we will move quickly over other essential topics of cryptography, like
message authenticity, and digital signatures. Our report will focus largely on the mathematics
behind certain cryptographic systems, and methods for reliably generating large prime numbers
for these systems. These methods will later be rigorously compared in terms of efficiency.

1.2 Efficiency

1.2.1 A fundamental limitation

In the early days of cryptography, developers of encryption methods were concerned with the
notion of perfect security. This is system where, even if an encrypted message was intercepted,
one would learn nothing from the it, and no method could exist to obtain information about the
original message - without the secret key.

Today, we know an example of such a system; the One-Time Pad. This works by converting a
message into a stream of bits, combining it with a key of equal length, and XORing them together.
XOR is short for the logical exclusive OR operator. It is is performed bitwise (i.e. match up the
ith bit of your message with the ith bit of the key and XOR these), and is commonly denoted by
the additive ⊕ symbol, as it is mathematically equivalent to addition modulo 2. For decryption,
simply XORing the encrypted message with the key again, will reveal the message. This method
of encryption is has the one-time prefix because it can be used securely only once with the same
password. To see this, consider two messages mi and corresponding encrypted text ci = mi ⊕ k
for some key k. By taking c1 ⊕ c2 = (m1 ⊕ k) ⊕ (m2 ⊕ k) = m1 ⊕m2 we can subtract the key
from the combined message. For such a bitwise sum of two messages, there are bound to be
statistical patterns from the overlying language of the messages. These can be exploited to reveal
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information about the original messages.

Unfortunately, this is not its most significant problem. The key has to be as least as long as
the message, as otherwise it will be susceptible to a class of attacks, described in a later section
about the Vigenère cipher. This will become cumbersome when trying to encrypt large amounts
of data. Just imagine the preposterous solution of having to store a 40GB key for encrypting
40GB of data. There is also the potential problem of transporting the key to the receiver. If this
cannot be delivered in person, would one have to encrypt this key as well? Should one engage in
a cycle of encrypting keys of keys until an adversary becomes bored? Clearly, this is not a good
solution.

The fundamental problem is a mathematical one. It is possible to show that any cryptosystem
offering perfect security, must have a key length at least as long as the message itself [7]. There-
fore, this notion of perfect security has been left for us as an unfortunate historical warning; any
encryption method must have the possibility of being broken to be practical.

To overcome this fundamental limitation, we will need to lay the groundwork for what it means
for a mathematical problem to be hard.

1.2.2 Big O

Following Dietzfelbinger’s approach [2] we define O (big O) as follows.

Definition 1.2. For a function f : N→ R+ we define O(f), or big O of f as

O(f) = {g | g : N→ R+, ∃C > 0, ∃n0∀n ≥ n0 : g(n) ≤ C · f(n)}.

Informally, we may think of O(f) as the set of functions g, that grows at no faster rate than f .

Example 1. Suppose g(n) ≤ 15 log n+5(log log n)2 for all n ≥ 50, then g ∈ O(log n) ⊂ O((log n)2).

The subset statement aims to clarify that we are indeed dealing with sets, and a statement about
a function using big O, might not represent the strongest possible bound for growth. However,
we will still stick to the conventional definition that g(n) = O(f(n)) if g ∈ O(f(n)), where the
equality sign is used very abusively.

This approximation to the growth of a function, will be used to describe the running time of an
algorithm A. We will say that A is O(f(n)), if the running time of tA(n) of the algorithm on
input n satisfies tA(n) = O(f(n)). This is also sometimes called the complexity of A. Using these
simplifications, and other similar grammatical abbreviations, we can with reasonable accuracy
say much about the growth rate without being too verbose. Following is a clear lemma that we
will state without proof.

Lemma 1.3. Suppose g1(n) = O(f1(n)) and g2(n) ∈ O(f2(n)). Then

1. g1(n) + g2(n) = O(max {f1(n), f2(n)}).

2. g1(n)g2(n) = O(f1(n)f2(n)).

Note that while this works for fixed size sums (independent of n), we can not induct with this
statement. Say fi(n) = n for i ∈ {1, . . . , n} then

∑
fi(n) = n2 /∈ O(n).
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1.2.3 Complexity

To properly analyze mathematical methods, or algorithms, it is important to have a measure of
how big the input is. In our case, a one parameter input is sufficient, but these concepts can be eas-
ily generalized (see [6] for this and for more details on this subsection). We let ‖n‖ := blog2 nc+1
be the number of bits of n. It is reasonable to use this a measure for input size because of how
computers operate. It gives the ability to count the number of cycles needed to run a certain
algorithm in terms of bit operations.

Secondly, to be able to use big O to analyze the hardness of a problem, we need to classify what
hard is. A simple way of doing this is to divide functions up into so called complexity classes,
by grouping them together by their smallest known running time into particular forms of big O
estimates.

Definition 1.4. An algorithm A is said to be of polynomial complexity if its running time on
input n is O((log n)z) for some z ∈ N.

This is equivalent to the requirement that its bitwise complexity, i.e. its running time in terms of
an input of k bits, is O(kz). This is where the polynomial name comes from. If we can express
the running time of of an algorithm in terms of a polynomial of the input bit size, then it satisfies
this definition for some z ∈ N, and we call it succinctly a polynomial time algorithm. We want
encryption to be such a polynomial time algorithm, while decryption should not be so without
the key. In fact ideally, we want decryption to be fundamentally hard and belong to a different
complexity class.

Definition 1.5. An algorithm A is said to be of exponential complexity if its running time on
input n is O(nz) for some z ∈ N.

One can also make the equivalent definition in terms of bit length, to obtain the reason behind
the name, exponential (bit) complexity. A problem that can only be solved by algorithms in this
class is thought of as being truly hard. However, the common definition is a little more forgiving.

Definition 1.6. A problem is said to intractable if no polynomial time algorithms exist to solve
it.

In this report we will simply call any such problem hard, and any algorithm that runs in polynomial
time, an efficient one. The latter is usually only done with the added informal requirement that
there are no unreasonable constants in this polynomial, to render the the method useless even at
large inputs. This actually calls out a rather big flaw in this simplifying nature of big O; while
certain algorithms might beat others in complexity, they might not actually be faster until the
input is reaches thousands of digits. This also helps the somewhat intuitive, but informal notion,
that the smaller big O bound, the more complex the actual algorithm is likely to be (relative to
the original bound from the original approach).

1.2.4 Complexity of Basic Operations

Continuing Dietzfelbinger’s approach, we obtain a simple big O estimate of the basic mathematical
operations.

Lemma 1.7. Let m,n ∈ N be two numbers . Then

1. Adding or subtracting takes O(‖n‖+ ‖m‖) = O(log n+ logm) bit operations.
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2. Multiplication takes O(‖m‖ · ‖n‖) = O(log n · logm) bit operations.

3. Computing the quotient of n divided by m (denoted n div m) and the remainder n mod m
takes O((‖n‖ − ‖m‖+ 1) · ‖m‖) bit operations.

Proof. Primary school methods adopted to binary all yield the claimed bounds. Note that in the
big O notation, the base of the logarithm is irrelevant.

There are other asymptotically faster ways to multiply two numbers of k bits. One example is
the Karatsuba algorithm, with complexity O((k)log2 3), and another, is SchonhageStrassen that
clocks in at O(k log k log log k) [6]. Now a somewhat surprising result is that these algorithms
also immediately generate same complexity algorithms for divisions. To see this we must pull
out Newton-Raphson from our old bag of tricks [18], to help us find the reciprocal of a rational
q 6= 0. For this to work we need a function with a zero at 1/q, and by cleverly using the function
f(x) = 1

x − q, we obtain the Newton-Raphson iterate

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

1
x − q
−1
x2k

= xk + xk(1− qxk) = xk(2− qxk),

by only using multiplication and subtraction. The general quadratic convergence properties of
this method, should also ensure that we do not have to do too many steps for this to be a sufficient
approximation of 1/q.

Exactly how useful these multiplication and division algorithms are in practice, is another ques-
tion entirely. The documentation from MAGMA claim that these algorithms have a crossover
points in efficiency (for Schonhage−Strassen vs. Karatsuba) at somewhere around an input of
215 bits [19]. It is unlikely that this is going to be useful in cryptography soon. However, with
Moore’s law looming on the horizon, it would be unwise to discard these completely. It is clear
that combining these methods with more complicated algorithms encountered later, will reduce
their complexity. While this could be useful for the later discussed primality proving algorithms
at the extreme ends, they are out of the range of numbers encountered in cryptography today,
and will not be discussed any further.

We leave this peripheral section as a word of caution about big O; it can be terribly oversimplifying
to not know the constants, but just the growth of an algorithm’s running time. A more amusing
side of this is obtained from writing out the Schonhage−Strassen complexity in the unsimplified
non-bit form to get the preposterous O(log n log log n log log log n). Such monstrosities are not
uncommon in this field, but to omit them, is to miss the chance of retelling another terrible joke.

What sound does a drowning number theorist make? loglogloglogloglog..

1.2.5 Fast Modular Exponentiation

A basic operation required for cryptography is the ability to raise things to large powers, in some
finite ring, say an mod m. If we simply did n straight multiplications, then this would be an
exponential time algorithm. The cleverer approach is to realize that we can repeatedly square
an element most of the time. For instance a100 = a4 · a32 · a64, and this decomposition is fully
determined by the binary expansion of 10010 = 11001002. For instance, if the last bit is a zero,
n = 0 mod 2, so we can remove that bit and look at the remaining power after squaring a once.
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If the last bit is a 1 somewhere in this process, then the remaining power is odd, so we need to
multiply by a once to make it even. This fully determines an inductive step, and we compose the
following algorithm from the less clear [4][p114].

Fast Modular Exponentiation

Input: Integers a, n,m, n ≥ 0
Output: an mod m
Method:

0 r ← 1;
1 while(n>0)

2 if (n mod 2 = 1) then

3 r ← (ar) mod m;

4 n← n− 1;
5 else

6 a ← a2 mod m;

7 n← n/2;
8 return r;

Running through for a100 we see that r gradually increases from 1, a4, a36 to finally a100 in the
iterations when a is not squaring itself. It’s clear that this would work without the modulus taken
into account, but the modular version has bounded output and does not suffer from overflow
issues. By taking moduli, we can additionally bound the running time of this algorithm.

Lemma 1.8. Fast modular exponentiation runs in O(log n) arithmetic operations, and O(log n(logm)2)
bit operations.

Proof. Look at the binary representation of n. If the least significant bit is a one, the while
loop needs an additional run to get rid of that bit. In the worst case the while loop needs
2‖n‖ = O(log n) iterations. Now multiplication mod m, is always done with two numbers smaller
than m, so that isO((logm)2), and by plugging a number n < m2 mod m into the basic complexity
lemma, we get that reduction mod m also is

O((‖n‖ − ‖m‖+ 1) · ‖m‖) = O((2 logm− logm+ 1) logm) = O((logm)2).

Thus, summing these complexities using the earlier lemma, give the desired overall bound.
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Chapter 2

Number Theory

To be able to formally discuss cryptography properly, we do need to lay some mathematical
groundwork in number theory. Most of this is expected to be familiar, so it is run through fairly
quickly. The goal of the first section is to prove a complexity bound on the Euclidean Algorithm.

2.1 Divisibility and the Euclidean Algorithm

2.1.1 G.C.D. and Divisibility in Z

This section presents a very quick rundown of only the necessary lemmas from [2, pp23-32] about
the greatest common divisor and divisibility required to continue.

Definition 2.1. For an integer n, let D(n) denote the set of non-negative divisors of n.

Definition 2.2. For two integers m,n, not both zero, we define their greatest common divisor of
n and m to be the maximal element of D(n) ∩D(m). Additionally, we say m,n are coprime or
relatively prime if gcd(m,n) = 1.

Note that this is well defined as: the set is non-empty (it contains 1), it’s a finite set whenever n
and m are not both zero (by convention D(0) = N but gcd(0, 0) = 0) and hence it has a maximum.

The gcd function have a very important property, a type of modular invariance. The corollary of
this, essentially proves the validity of the basic Euclidean Algorithm.

Lemma 2.3. For all integers n,m, x we have gcd(n,m) = gcd(n+mx,m)

Proof. Assume without loss of generality that m 6= 0. Then D(m) is a finite set, and it suffices
to show D(n) ∩D(m) = D(n+mx) ∩D(m).
(⊆) If n = du and m = dv, then n+mx = d(u+ vx), hence n+mx is a multiple of d as well.
(⊇) If n+mx = du and m = dv then n = d(u− vx), hence n is a multiple of d as well.

Corollary 2.4. If m ∈ N, then ∀n ∈ Z gcd(n,m) = gcd(n mod m,m).

Proposition 2.5. For m,n ∈ Z there exists integers x and y such that gcd(n,m) = nx+my.

Proof. This is not necessary to prove for the Euclidean Algorithm, and will in fact follow from its
extended version.

Proposition 2.6. For integers m and n we have
gcd(m,n) = 1 ⇐⇒ ∃x, y ∈ Z such that nx+my = 1.
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Proof. First direction follows from previous lemma, so suppose nx+my = 1. Then n and m cannot
both be zero, and every common divisor of m and n also divides 1. Hence gcd(n, n) = 1.

The following lemma was simply included for completeness, and states that Z is a Euclidean
Domain. Feel free to jump to the next section.

Lemma 2.7. (Integer Division with Remainder). Let n ∈ Z and d ∈ N. Then there exist unique
integers q (the quotient) and r (the remainder) such that n = dq + r and 0 ≤ r < d.

Proof. (Existence) Let q be the maximal integer such that qd ≤ n. Since (−|n|)d ≤ n < (|n|+1)d,
such q exists and can in principle be found by searching through a finite set of integers. The choice
of q implies that
qd ≤ n < (q + 1)d. We define r := n− qd, and conclude that 0 ≤ r < d.
(Uniqueness) Assume n = qd+ r = q′d+ r′, for 0 ≤ r, r′ < d. By symmetry, we may assume that
r′ − r ≥ 0, and then 0 ≤ r′ − r < d.
Thus 0 = (q′−q)d+(r′−r), so r′−r is a multiple of d. Now the only multiple of d in {0, 1, . . . , d−1}
is 0, so we must have r′ = r and consequently qd = q′d. Since d is non-zero, we get q = q′.

2.1.2 The Euclidean Algorithm

The Euclidean Algorithm, the perhaps oldest known algorithm, is a way of finding the gcd of
two integers by repeatedly applying above corollary, combined with the stopping condition that
gcd(r, 0) = r. As this is fairly well known, we simply leave it here in the unusually elegant 1 line
recursive form with a little more advanced pseudocode.

function gcd(n,m) { return m = 0 ? n : gcd(m,n mod m); }

Here the ternary operator ? is for the non-programmers a simplified if-else statement, with the
checked condition before the operator, and the two outcomes (true result first) are separated by
the semicolon. The function calls itself recursively until the last call returns a number, which is
then passed on through all these calls to the original. The benefit of writing an algorithm down
recursively is that it is easily analyzed mathematically by an induction argument. It is clear that
this algorithm generates a sequence of pairs

(n,m) = (a0, b0), (a1, b1), . . . , (at, bt) (2.1)

where ai = bi−1 and bi = ai−1 mod bi−1 for 1 ≤ i ≤ t.

Lemma 2.8. (Efficiency of EA) The Euclidean Algorithm does at most 2 min{‖n‖, ‖m‖} =
O(min{log n, logm}) recursive calls, and the number of bit operations made is O(log n logm).

Proof. From [2]. It is clear that the sequence of pairs (ai, bi) generated above is strictly decreasing
in both variables, and while (ai) converges to the gcd, bi converges to 0. Note that (ai) and (bi)
converge simultaneously.
If bi+1 >

1
2bi = 1

2ai+1 then bi+2 = ai+1 − bi+1 <
1
2bi. On the other hand,

if bi+1 ≤ 1
2bi = 1

2ai+1 then bi+2 = ai+1 mod bi+1 < bi+1 ≤ 1
2bi.

So in either case, the bi’s are decreasing in bitlength at least every other iteration, so it would
take at most 2 min{‖n‖, ‖m‖} iterations for it to converge.
Now to divide ai by bi t times, we need at most O((‖ai‖ − ‖bi‖ + 1) · ‖bi‖) bit operations. Note
that bi = ai+1 for 0 ≤ i < t and bt = 0. Thus

(‖ai‖ − ‖bi‖+ 1) · ‖bi‖ = ‖ai‖‖bi‖ − ‖ai+1‖‖bi‖+ ‖bi‖ ≤ (‖ai‖ − ‖ai+1‖)‖b0‖+ ‖bi‖.
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So we need ∑
0≤i<t

O((‖ai‖ − ‖bi‖+ 1) · ‖bi‖) = O(
∑
0≤i<t

(‖ai‖ − ‖ai+1‖)‖b0‖+ ‖bi‖)

and, by splitting the sum and canceling telescoping terms, this is

= O(‖b0‖(‖at−1‖ − ‖a0‖) + t‖b0‖) = O(‖b0‖‖a0‖+ t‖b0‖) = O(‖m‖‖n‖).

The step where O is taken outside a sum makes sense as this is really shorthand for saying that
we are summing a set of functions that are O(gi(n)). The resulting function is clearly O(

∑
gi(n)).

This is the familiar (basic) Euclidean Algorithm. However, we do need to modify this to obtain
integers x, y such that gcd(m,n) = mx + ny. With a preference for the recursive formulation
established, we present the Extended Euclidean Algorithm in this format.

function extended gcd(n,m) {
if (n mod m = 0) return {0, 1};
{x, y} := extended gcd(m, n mod m);
return {y, x− y ∗ (n div m)};

}

It is clear that we are not really doing anything more complex than we were already performing,
in the normal Euclidean Algorithm. We are simply keeping track of different variables, and this
does not affect the O(log n logm) bit complexity. Most importantly, however, it works.

Lemma 2.9. The Extended Euclidean Algorithm outputs a pair (x, y) such that nx + my =
gcd(n, n).

Proof. Let d := gcd(n,m), and note that if m | n then n ≡ 0 mod m and so d = 0n + 1m. The
recursive call in line two is applied to the pair (m,n mod m) so we can assume inductively that
mx+ (n mod m)y = d. Consequently,

mx−m(n div m)y + (n mod m)y +m(n div m)y = d.

Noticing that for any a, b ∈ Z the relation a = a mod b + b(a div b) holds, the main expression
thus contracts to

m(x− (n div m)y) + ny = d.

This shows that the new pair also satisfies the desired relation, completing the induction argument.

Typically this is presented as a long, non-recursive function keeping track of one additional value
(the gcd). This is clearly much more aesthetically pleasing, and one can obviously reclaim the
gcd from m,n, x, y.

As an indication of the how common this algorithm is, these elegant recursive formulations are
rewritten from versions, that were already very pleasing on wikipedia. The proof is still mathe-
matically solid, but the point was merely to show the concept simply, as there are other faster
implementations of the Euclidean Algorithm available (see for instance the quite recent recursive
binary gcd [22]).
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2.2 Finite Groups

2.2.1 Cyclic Groups and The Chinese Remainder Theorem

Many cryptographic systems builds on finite groups, or fields, and the notions of the orders of ele-
ments. We will not define everything required from group theory, but rather give a quick rundown
on the most important notions, and some of their proofs. This will be done regardless of how
deeply these proofs depend on auxiliary statements within group theory. The rest of this chapter
will serve strictly as preliminary number theory, and will not really talk about cryptography at
all. Their use will only become apparent later, while discussing certain methods or cryptosystems.
We begin with defining the finite cyclic group, and its multiplicative group.

Definition 2.10. Let Zn = {0, 1, . . . , n− 1} be the cyclic group of n elements.

Definition 2.11. For n ≥ 1, we define the the multiplicative group of Zn to be

Z∗n = {a ∈ Zn : gcd(a, n) = 1}. (2.2)

Using this simplified notation for Z/nZ might run the risk of confusion, but there will be no
references to p−adic integers in this report. Now, we have not shown that the defined version of
the multiplicative group actually is a group yet. We thus present the following three results from
[2, pp34-38], with perhaps slightly shorter proofs.

Proposition 2.12. Z∗n is the multiplicative group modulo n of all invertible elements in Zn.

Proof. We will rely heavily on Proposition 2.6. If a, b ∈ Z∗n then 1 = ax+ ny = bu+ nv for some
integers x, y, u, v. Then

(ab) · (xu) = (ax)(bu) = (1− ny)(1− nv) = 1− n(y + v − nyv).

Hence gcd(ab mod n, n) = gcd(ab, n) = 1 showing that Z∗n is closed under multiplication. Clearly
1 ∈ Z∗n, so it also forms a group. We will show that its elements are invertible, and no other
invertible elements exist in Zn. So we suppose a ∈ Z∗n, so 1 = ax + ny for some integers x, y.
Then ax− 1 = −ny ≡ 0 mod n, and ax ≡ 1 mod n. Thus x = a−1 in Z∗n.
Conversely, if b ∈ Zn with ab ≡ 1, then ab − 1 = nx for some x, which implies gcd(b, n) = 1, so
b ∈ Z∗n.

This shows that we can compute the inverses of elements in Zn with help of the extended Euclidean
Algorithm.

Theorem 2.13. (Chinese Remainder Theorem) Let n = n1 · · ·nr for n1, . . . , nr relatively prime
integers. Then

Zn ∼= Zn1 × · · · × Znr (2.3)

Proof. We will show that the map

Φ : Zn → Zn1 × · · · × Znr , a 7→ (a mod n1, . . . , a mod nr)

is an isomorphism. It is clear that this is a homomorphism, whose kernel consists of elements
divisible by all the ni. But since these are all coprime, the kernel must be in the ideal generated
by n, and this exactly what it means for Φ to be injective. Now, since n = |Zn| = n = n1 · · ·nr =
|Zn1 × · · · × Znr |, it must also be true that Φ is also surjective.

12



The Chinese Remainder Theorem (CRT) is important for many cryptographic application be-
cause it means that operations in Zn for n as a product of two primes, can be performed in the
isomorphic ring Zp × Zq. Many schemes use this, or some modification of this ring. Another
interesting consequence of CRT, is that it actually provides a bijection between the corresponding
multiplicative groups.

Lemma 2.14. Let n = n1n2 be the product of two coprime integers, and Φ(a) = (a1, a2) from
CRT. Then a ∈ Z∗n ⇐⇒ a1 ∈ Z∗n1

, a2 ∈ Z∗n2
.

Proof. Still relying heavily on Proposition 2.6, we suppose a ∈ Z∗n, thus 1 = ax + ny for some
x, y ∈ Z. Now a = a1 + kn1 for some k, so 1 = (a1 + kn1)x + ny = a1u + (kx + n2y)n1 which
implies a1 ∈ Z∗n1

. The proof for a2 is similar.
Conversely, suppose a1 ∈ Z∗n1

and a2 ∈ Z∗n2
. Find integers x1, x2, y1, y2 such that a1x1 + n1y1 =

1 = a2x2 + n2y2. By CRT the congruences x ≡ x1 mod n1 and x ≡ x2 mod n2 admits a solution
x ∈ Zn and since

ax ≡ a1x1 ≡ 1 mod n1, and ax ≡ a1x1 ≡ 1 mod n2,

the uniqueness of this solution in fact forces ax ≡ 1 mod n which means that a is an invertible
element in Zn.

2.2.2 Euler Phi

We proceed to the Euler phi, also called the Euler Totient fuction.

Definition 2.15. (Euler Totient) For all n ∈ N the Euler function φ is defined by φ(n) := |Z∗n|.
With the above groundwork, certain famous results about Euler phi become trivial.

Corollary 2.16. (Properties of the Euler φ function)

1. If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

2. If p is prime, then φ(pr) = pr
(

1− 1
p

)
.

3.
∑

d|n φ(d) = n

Proof. (1) From [2]. Lemma above says that |Z∗mn| = |Z∗m| · |Z∗n|. We calculate (2) as follows

φ(pr) = |{a|1 ≤ a < pr, p - a}| = pr − |{a|1 ≤ a < pr, p|a}| = pr − pr−1 = pr
(

1− 1

p

)
.

(3) is less trivial and taken from [3]. Denote f(n) =
∑

d|n φ(d), and note that for any prime p

f(pr) =
∑
d|pr

φ(d) =

r∑
i=0

φ(pi) = 1 +

r∑
i=0

(pi − pi−1) = pr.

Now φ(n) is multiplicative (i.e. property (1) holds), and it suffices to show that f(n) is as well.
To see this, note that any divisor d | mn (when n,m are coprime) can be factored uniquely into
d1 and d2 where d1 | m, d2 | n. Since gcd(d1, d2) = 1, we have φ(d) = φ(d1)φ(d2) by (1). We get
all possible divisors d of mn by taking all possible pairs (d1, d2) where d1 is a divisor of m and d2
is a divisor of n. Thus

f(mn) =
∑
d1|m

∑
d2|n

φ(d1)φ(d2) =

∑
d1|m

φ(d1)

∑
d2|n

φ(d2)

 = f(m)f(n).
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Corollary 2.17. If n ∈ N has prime factorization n = pa11 · · · p
ak
k , then

φ(n) =
k∏
i=1

pai−1i (pi − 1) = n
k∏
i=1

(
1− 1

pi

)
. (2.4)

2.2.3 Euler’s Theorem

With Euler Phi fully described, the following famouse theorem says that if you raise any invertible
element of Zn to the power of the order of the multiplicative group, you get 1. Consequently, the
uniqueness of inverses gives another way to obtain inverses via a−1 ≡ aφ(n)−1.

Theorem 2.18. (Euler’s Theorem) Let a, n be coprime integers. Then aφ(n) ≡ 1 mod n.

Proof. From [4, p112]. Let r1, . . . , rφ(n) denote elements in Z∗n. Then ar1, . . . , arφ(n) are all
invertible, and since a is invertible modulo n, no two elements are congruent (for arj ≡ ari =⇒
rj ≡ ri when a is invertible). We now have two different representations of Z∗n, and so

ar1 · · · arφ(n) ≡ r1 · · · rφ(n) mod n.

Equivalently, by rearranging

aφ(n)r1 · · · rφ(n) ≡ r1 · · · rφ(n) mod n.

Which yields the result after cancelation of the invertible ri.

The famous corollary to this goes by the name of Fermat’s little theorem. This is simply the
special case of n = p prime, so φ(p) = p− 1.

2.2.4 Finite Fields and Primitive Roots

From the above results on Zn it is clear that this is a field if and only if n is prime. For this
reason, it makes sense to define Fq to be the finite field of q elements. From Galois theory, we
know that q can either be a power of a prime, or simply a prime (in which case it coincides with
Zq), but we will not prove this here.

The the multiplicative group F∗q of the finite field Fq, similarly contains all the invertible elements
of Fq. If we recall as well that the order of an element in a group is the least positive power of that
element that gives 1, then by the definition of a field, this must be the q − 1 non-zero elements.
Thus, we will simply state the following elementary group theoretic lemma in the special case of
F∗q .

Lemma 2.19. (Lagrange’s Theorem) The order of any a ∈ F∗q divides q − 1.

Definition 2.20. A generator g of a finite field Fq is an element of order q − 1. In other words,
the powers of g run through all the elements of F∗q .

The following are handpicked and proved from [3, pp33-43]. These will provide just the necessary
machinery to prove certain theorems about quadratic residues.

Proposition 2.21. Every finite field has a generator. If g is a generator of F∗q, then gj is another
generator if and only if gcd(j, q − 1) = 1.

14



Proof. We prove the slightly more general version of the second statement first: If a has order d,
then aj is another element of order d if and only if gcd(j, d) = 1. By the lemma above, we note
that our d must divide q − 1.
If gcd(j, d) > 1, then (aj)d/ gcd(j,d) = 1 and d/ gcd(j, d) < d proving the forward implication.
Conversely, pick j with gcd(j, d) = 1 and suppose for the sake of contradiction that the order
of aj is l < d. Since j and d are coprime we find integers x, y such that 1 = xj + yd. Thus
al = al(xj+yd) = (alj)x · (ald)y = 1, contradicting the minimality of the order d of a.
We have shown that for each d | q− 1 there are either φ(d) or 0 elements of order d. Fortunately,
every element has some order d | q−1, and by Corr 2.16 we know that

∑
d|q−1 φ(d) = q−1 = |F∗q |.

So the only way that every element can have some order d | q − 1 is if there are always φ(d)
elements of order d.

In particular there are φ(q − 1) different generators of F∗q .

Proposition 2.22. Let g be a generator of F∗q. Then gj is an nth root of unity if and only if
nj ≡ 0 mod q − 1. The number of nth roots of unity is gcd(n, q − 1). In particular, Fq has a
primitive nth root of unity (i.e. an element ζ such that all the powers of ζ run through the nth
roots of unity) if and only if n | q − 1. If ζ is a primitive nth root of unity in Fq, then ζj is also
a primitive nth root if and only if gcd(j, n) = 1.

Proof. Any element of F∗q can be written as a power gj of the generator g. A power of g is 1 if
and only if the power is divisible by q− 1. Thus, an element gx is an nth root of unity if and only
if nx ≡ 0 mod q − 1. Next, let d = gcd(n, q − 1). The equation nx ≡ 0 mod q − 1 is equivalent
to the equation n

dx ≡ 0 mod q−1
d . Since n/d and (q − 1)/d are coprime, the latter congruence

is equivalent to requiring x to be a multiple of (q − 1)/d. In other words, the d distinct powers
of g(q−1)/d are precisely the nth roots of unity. There are n such roots if and only if d = n, i.e.
n | q − 1. Finally, if n | q − 1, let ζ = g(q−1)/n. Then ζj = 1 if and only if n | j. The kth power of
ζj equals 1 if and only if kj ≡ 0 mod n. It is easy to see that ζj has order n if and only if j and
n are coprime. Thus, there are φ(n) different primitive nth roots of unity if n | q − 1.

2.3 Quadratic Residues

A particularly interesting topic in number theory, is the classification of quadratic residues. One is
tempted to think that this topic is the typical theoretical abstraction with very few applications in
cryptography. In fact, quoting Samir Siksek in a lecture at University of Warwick about quadratic
residues he goes, albeit slightly paraphrased, ”But Samir, why would this theorem ever be useful?
Well. I will tell you. One year from now, when you are still queuing up at the employment office
for jobs, you will look around you, see all these other people, and sneer at them. These people do
not even know the law of quadratic reciprocity... But other than that..”

2.3.1 The Legendre Symbol

We follow the approach of Koblitz [3, pp43-47] work with Legendre symbol.

Definition 2.23. We say a non-zero integer a is a quadratic residue mod n if there exists a
solution to the equation x2 ≡ a (mod n). If no such x exist, we say a is a quadratic non-residue
mod n.

We are usually interested determining whether of not a is a quadratic residue in the case that n
is prime.
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Lemma 2.24. Let p be a prime. Then x2 ≡ y2 (mod p) ⇐⇒ x ≡ ±y (mod p).

Proof. If x2 ≡ y2 (mod p) then p | (x2 − y2) = (x − y)(x + y). But p is prime, so p | (x − y) or
p | (x+ y). Thus x ≡ ±y (mod p).

This means that every square has exactly two solutions to x2 ≡ a (mod p), so by squaring all non-
zero elements of the field Fp we get exactly (p− 1)/2 quadratic residues, and (p− 1)/2 quadratic
non-residues. For brevity, we let Qndenote the set of quadratic residues mod n, and conversely
Qnthe set of quadratic non-residues. We exclude zero from the set Qn, despite the fact that
02 = 0, to obtain the nice relation |Qp| = |Qp|.

Note that these sets are informally considered as equivalence class representatives under the
equivalence relation congruence. I.e. by a ∈Qp, we mean that the remainder of a (mod p) is one
of these (p− 1)/2 elements less than p, that have a square root in Fp.

Definition 2.25. For a prime p > 2 and an integer a we define the Legendre Symbol (ap ) to be

(
a

p

)
=


0 if p | a
1 if a ∈Qp
−1 if a ∈Qp

(2.5)

Theorem 2.26. (Euler’s Criterion)(
a

p

)
≡ a(p−1)/2 (mod p). (2.6)

Proof. If p divides a then both sides are zero mod p, so suppose p - a. By Fermat’s Little Theorem
a(p−1)/2 squares to one, so a(p−1)/2 is ±1 by the lemma above. Let g be a generator of F∗p and
find j such that a ≡ gj (mod p). There are (p− 1)/2 elements in Qp, and by considering all the
even powers of the generator, we can find them all.
Now gj(p−1)/2 = 1 ⇐⇒ j(p−1)/2 is a multiple of p−1 ⇐⇒ j is even. So a(p−1)/2 = gj(p−1)/2 =
1 ⇐⇒ j is even ⇐⇒ a ∈ Qp.

Proposition 2.27. (Properties of the Legendre Symbol)

1. If a ≡ b (mod p) then
(
a
p

)
=
(
b
p

)
2.
(
ab
p

)
=
(
a
p

)(
b
p

)
3.
(
ab2

p

)
=
(
a
p

)
for b and p coprime.

4.
(
1
p

)
= 1 and

(
−1
p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

5.
(
2
p

)
= (−1)(p

2−1)/8 =

{
1 if p ≡ 1 or 7 (mod 8)

−1 if p ≡ 3 or 5 (mod 8)
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Proof. Part 1) is clear by the informal definition of Qp, and part 2) and 4) follows from the
representation in the right hand side of Euler’s Criterion. Part 3) follows immediately from part

3) by noting that ( b
2

p ) = 1 as any (non-zero) square is a quadratic residue.

Part 5) is non-trivial. We start by defining f(n) = (−1)(n
2−1)/8 for odd n, and zero for even n.

We will show that (2p) = f(p). Since p2 ≡ 1 (mod 8) for all odd primes p we know by Prop. 2.22
that the field Fp2 contains a primitive 8th root of unity. We let ζ denote this primitive root, and

define G =
∑7

j=0 f(j)ζj . We have G = ζ − ζ3 − ζ5 + ζ7 = 2(ζ − ζ3) by the definition of f and by

noting that ζ4 = −1. Thus G2 = 4(ζ2 − 2ζ4 + ζ6) = 8. We can therefore write Gp as

Gp = (G2)(p−1)/2G = 8(p−1)/2G =

(
8

p

)
G =

(
2

p

)
G.

Note we have used Euler’s Criterion to rewrite the first factor and part 3) to get rid of a power
of two. Now our function f satisfies f(j)p = f(j), as (−1)p = (−1) for p odd, and less trivially
f(j) = f(p)f(pj). We can verify the latter by verifying the equivalent logical statement

(p ≡ ±1 ∧ pj ≡ ±1) ∨ (p ≡ ±3 ∨ pj ≡ ±3) ⇐⇒ (j ≡ ±1)

using the mod 8 version of f(j). I.e. the terms on the right hand side are either both 1 or both -1
if and only if the left hand side is 1. Additionally, in our finite field Fp2 , which has characteristic p,
we know (a+b)p = ap+bp (see 4.8). So by direct calculation, we now obtain a different expression
for Gp by

Gp =
7∑
j=0

f(j)ζpj =
7∑
j=0

f(p)f(pj)ζpj = f(p)
7∑

k=0

f(k)ζk = f(p)G.

The first step uses the distributivity of the p’th power and the last substitution is valid as if j
runs through 0, 1, ..., 7 so does pj mod 8. Comparing these two expressions for Gp, and dividing

by the non-zero element G (as G2 = 8) reveals f(p) =
(
2
p

)
proving part 5.

2.3.2 Quadratic Reciprocity

The last part of the theorem was really a lot harder than the other properties of the Legendre
symbol, and it is in fact often associated with the much stronger law of quadratic reciprocity. The
proofs of these are a bit long, but we have modified them to a much clearer format, compared to
how they were presented in [3]. Additionally, we would like to point out that of the three different
variants that we have come across, this is by far the cleanest.

Theorem 2.28. (Law of Quadratic Reciprocity) Let p, q be odd primes. Then

(
q

p

)
= (−1)(p−1)(q−1)/4

(
p

q

)
=


(
p
q

)
if p ≡ q ≡ 3 (mod 4)

−
(
p
q

)
if p or q ≡ 1 (mod 4)

(2.7)

Proof. Let f = q− 1. By by 2.22 we can find a primitive q-th root of unity ζ in Fpf . Similarly to

the last Legendre property proof, we define G =
∑q−1

j=0

(
j
q

)
ζj . Noting that we can truncate the

first term, we get

G2 =

q−1∑
j=1

(
j

q

)
ζj

(q−1∑
k=1

(
k

q

)
ζk

)
=

q−1∑
j=1

(
j

q

)
ζj

(q−1∑
k=1

(
−k
q

)
ζ−k

)
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=

q−1∑
j=1

q−1∑
k=1

(
j

q

)
ζj
(
−k
q

)
ζ−k =

(
−1

q

) q−1∑
j=1

q−1∑
k=1

(
jk

q

)
ζj−k

We have substituted k for −k in one copy of G in the first line, used property 2 of the Legendre
symbol in line 2. Now substitute k for kj in the inner sum. This is valid as the inner sum depends
only on the residue mod q, and when k runs through these, so does kj. Thus

= (−1)(q−1)/2
q−1∑
j=1

q−1∑
k=1

(
j2k

q

)
ζj(1−k) = (−1)(q−1)/2

q−1∑
k=1

(
k

q

) q−1∑
j=1

ζj(1−k)

= (−1)(q−1)/2
q−1∑
k=1

(
k

q

) q−1∑
j=0

ζj(1−k) = (−1)(q−1)/2
(

1

q

) q−1∑
j=0

ζ0 = (−1)(q−1)/2q.

Here we changed the order of summation, and in the second line added
∑q−1

k=1

(
k
q

)
to the sum to

get the index of j down to 0 (note this addition is zero as |Qq| = |Qq|). The final step comes from
recognizing that the sum of the distinct powers of all the primitive roots is always zero. We are
half-way done.
We now work out two expressions for Gp along the lines of property 5. Using our expression for
G2 and Euler’s Criterion (working in a field of characteristic p justifies the mod p comparison) we
have

Gp = (G2)(p−1)/2G =
(

(−1)(q−1)/2q
)(p−1)/2

G

= (−1)(p−1)(q−1)/4q(p−1)/2G = (−1)(p−1)(q−1)/4
(
q

p

)
G.

The second expression, we have yet to work out uses the distributivity (a + b)p = ap + bp in

characteristic p again, and the trivial observation that
(
j
p

)p
=
(
j
p

)
as such

Gp =

q−1∑
j=1

(
j

q

)
ζj

p

=

q−1∑
j=1

(
j

q

)
ζ(jp) =

(
p

q

) q−1∑
j=1

(
pj

q

)
ζ(jp) =

(
p

q

)
G.

This uses property 2 and 3 of the Legendre symbol, while the very last step changes the variables
j′ = pj in the sum to obtain G. Now simply compare the two expressions for Gp, and cancel the
non-zero element G (as G2 = ±q) to obtain the result.

2.3.3 The Jacobi Symbol

Finally, we generalize the construction to pairs a, n where n is not assumed to be prime.

Definition 2.29. (Jacobi Symbol) Let n = pa11 · · · p
ak
k and a ∈ Z We define the Jacobi Symbol of

a over n to be (a
n

)
=

(
a

p1

)a1
· · ·
(
a

pk

)ak
(2.8)

Note that this construction does not have the same property as the Legendre symbol with respect
to determining whether or not a is a quadratic residue mod n. For instance, with n composite,
there is no guarantee that because

(
a
n

)
= 1, we have a ∈Qn. However, with this construction all

the nice properties of the Legendre symbol carry over. Most of them do so trivially, so we will
only explain the quadratic reciprocity laws.
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Proposition 2.30. Let a be an integer and n an odd positive integers. Then

1.
(
2
n

)
= (−1)(n

2−1)/8

2.
(
m
n

)
= (−1)(m−1)(n−1)/4

(
n
m

)
Proof. (1) Let f(n) = (−1)(n

2−1)/8 and note like earlier that f(nm) = f(n)f(m). Thus

f(n) = f(p1)
a1 · · · f(pk)

ak =

(
2

p1

)a1
· · ·
(

2

pk

)ak
=:

(
2

n

)
.

For (2) we assume without loss of generality that gcd(m,n) = 1 (otherwise both sides are zero).
Write m = p1 · · · pr and n = q1 . . . qs where the some prime factors may be repeated. We now

convert
(
m
n

)
=
∏
i,j

(
pi
qj

)
to
(
n
m

)
=
∏
i,j

(
qj
pi

)
by applying the quadratic reciprocity law rs times.

The number of sign changes we get is the number of both pi and qj that are ≡ 3 mod 4, i.e. it’s
the product of primes ≡ 3 mod 4 in the factorization of m and in the factorization of n. Thus,(
m
n

)
=
(
n
m

)
unless there are an odd number primes ≡ 3 mod 4 in both factorizations, in which

case
(
m
n

)
= −

(
n
m

)
. But a product of odd primes is ≡ 3 mod 4 if and only if it contains an odd

number of primes which are ≡ 3 mod 4, so our proof is complete.
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Chapter 3

Cryptography

The process of encryption, also called enciphering, is running a plaintext P ∈ P through an al-
gorithm fE : P → C. The process of decryption, or deciphering, is running a ciphertext C ∈ C
through an algorithm fD : C → P. The sets P, C are called the sets plaintexts and ciphertexts
respectively, and depending on the system, these will vary. We will use an informal version of
Katz and Lindell’s [7] definition of a cryptosystem, and explain some of the key nuances as we go
along.

Definition 3.1. (Cryptosystem) A cryptographic system is a set of probabilistic or deterministic
algorithms for encryption, decryption and for the generation of keys. The encryption and decryp-
tion algorithms will be denoted (fE , fD) and will be referred to as the cipher algorithms or cipher
functions with the requirement that fD ◦ fE = 1P .

The latter requirement states that decryption should be the right inverse of encryption, and
fD(fE(P )) = P for all plaintexts P ∈ P. However, this notation is slightly abusive in a general
context, when dealing with complicated probabilistic algorithms. Nevertheless, for the crypto-
graphic systems we will be dealing with, this notation will suffice. Additionally, it is worth noting
that as functions, encryption and decrypting pass through the ciphertexts and the plaintexts sets,
that may or may not be different depending on your algorithms. However, generally they operate
on integers, or integers modulo some integer. For example, we can represent one character using
a number and encrypt each letter separately. Alternatively, we can consider larger fixed length
blocks of characters, that will be padded with zeroes to fit. The latter will be demonstrated to
be the better solution in the next section, where we will drop the P, C notation in favour of the
actual sets.

For the most of this chapter, we will ignore the topic of key generation and assume that we
have efficient and reliably random methods for computing the necessary keys, to work with the
described cryptosystems. We also note that this definition says nothing about the strength or
security of the system. Initially, this will be discussed informally with some simple systems, but
will be approached more formally towards the the end, before we start dealing with serious cryp-
tographic systems.

Recalling Kerchoff’s principle, it is important to note that there may still be benefits, from secrecy.
For instance one can mask flaws that one does not know how to correct immediately. However,
these bonuses are considered null and void for the academic purposes of this report, and we will
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focus on the provable security features of a system, rather than the so called security through
obscurity, that this practice amounts to.

3.1 Private Key Cryptography

Before we go into public key systems, we will start with some simple examples of private key
cryptosystems, as an illustration of the common hazards of cryptography. For a detailed account
of this, we refer to Beutelspacher[8][pp1-66], but we will present some of the more important ideas
from his book.

A private key cryptosystem, also called a symmetric cryptosystem or cipher, is simply a cryp-
tosystem with the same key used for encryption and decryption. An example would be the shift
cipher, which is commonly referred to as Caesar’s cipher, when dealing with individual letter
encryption.

Definition 3.2. (Shift ciphier) Let s,N ∈ N. The shift cipher algorithms is the pair consisting
of fE(P ) = P + s mod N and fD(C) = C − s)
Here the secret key is the integer s < N , and for N = 26 we are simply shifting letters around
the alphabet, and the result looks like gibberish, as it should. Unfortunately, this is a useless
construction in terms of secrecy, as a simple guess among the 26 different values of s grant the
secret key. It is also possible to merely look at the frequency of the ciphertext letters, and try to
match them up with the known distribution of letters in a given language. Clearly a requirement
for a strong cryptosystem, therefore must be that it has a large keyspace, and one cannot infer
anything about the plaintext from the ciphertext (in polynomial time). If the latter is possible,
then we say the cipher can be broken by a known ciphertext attack, and it is placed pretty much
on the lowest echelon of security. On the other hand, if this is proven infeasible, then the cipher
is said to be semantically secure.

One possible way to try to improve this, is to encrypt a k letter block and work modulo Nk for
integers of the form

∑k
i=1 aiN

k−i, where ai denotes the ith letter in the plaintext. However, this
is also has problems when the number of characters available per letter (N) is known (reasonable
to assume by Kerchoff). For instance, taking the ciphertext mod N gives the last letter in each k
letter block, so given more ciphertexts, we can potentially work out s mod N by looking at letter
frequencies [3, p61]. By increasing the powers of N , it is possible to work out s iteratively this
way. Thus this cipher offers no real security, and its use should be highly discouraged.

In 1586, Blaise de Vigenère published an enhancement of the shift cipher (for single letter encryp-
tion), that is now popularly referred to as the Vigenère cipher [8, pp27-44]. The main idea is use a
keyword, of say length l, turn it into numbers via the natural correspondence {a, b, . . . , z} ↔ Z26,
and shift the ith letter of a plaintext by the (i mod l)th keyword number. Essentially, this means
we combine l shift ciphers (whose shift factors are described by the keyword) to create a con-
ceivably stronger cipher. It is clear that by going from a length one keyword (an ipso facto shift
cipher) to a length l > 1, letter frequencies will be equalized somewhat (compared to the plaintext)
as the most common letters get shifted around to more than one letter, depending on the keyword.

Unfortunately, the security of this cipher also depends highly of the keeping the key length l se-
cret, as for if this is known, then every letter that lie in the same residue class mod l, use the same
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shift; thus, it can be analyzed via letter frequencies to work out a letter in the key. One method
for finding l, is to look at repeating series of digraphs (2 letter blocks), and trigraphs (3 letter
blocks), and look at multiples of distances between their repetitions. The only way this cipher
would be considered secure nowadays, is if we used a key as long as the plaintext (eliminating
attacks to obtain l), and that this keyword was a random stream of letters (not a long English
paragraph as the letter frequency of this would rub of in the ciphertext somehow). Clearly this
just creates more problems than it solves, and we will not investigate this further.

The main lesson from this section on Vigenère, is that just because a cipher seems complicated,
does not in any way make it strong. Most of the ciphers we will discuss in the next chapter are
based on a mathematical problem, that have been considered to be hard for many centuries.

3.2 Public Key Cryptography

A public key cryptosystem, also called an asymmetric cryptosystem or cipher, is a cryptosystem
with a publicity available encryption key, and a secret decryption key, which should be unobtain-
able. Essentially, we follow the definition of a cryptosystem, but now with modification that the
encryption algorithm and all its parameters are publicly available. This is an analogue of mailbox
security; everyone can drop a message into your mailbox, but only you have the right key to open it.

One important note about public key cryptography, is that if an adversary has intercepted a mes-
sage, and has access to the encryption function (here a reasonable assumption), then he must not
be able to apply brute force encryption to the message space to find a corresponding ciphertext.
Such an attack is commonly called a chosen plaintext attack.

An obvious example of attempt at a public key cryptosystem, is to modify the old shift variant
and give the dead horse a few more hits with the metaphorical paddle.

Definition 3.3. (Affine cipher) Let N ∈ N. The affine cipher algorithms are the functions

1. fE(P ) = aP + b mod N ,

2. fD(C) = a′C − b′ mod N .

If we ignore all the aforementioned problems with frequency analysis and shifting as a enci-
phering method in general, then this would be a good first stab at a public key cryptosystem.
The key idea here, is that it is not immediately clear what the secret keys (the parameters of
the decrypting function) would be from just seeing the encryption function. Unfortunately, it
does not require a considerable amount of work to be of any use [3], as if P = fD(fE(P )) then
a′C + b′ = a′(aP + b) + b′ = P , and so we require a′ = a−1 and b′ = −a−1b. Obtaining the
modular inverse of a is done by using the Extended Euclidean Algorithm in O((log(N))2) bit
operations. Thus, an adversary can also do this in polynomial time and we deduce that this
public key cryptosystem is broken under Kerchoff’s principle.

Let us look at this implicit requirement more closely. We want to create a method from which we
can only go back if we have the key, or if not, have to subject ourself to a calculation that scales
infeasibly with input. Such a function is called a trapdoor function.

Definition 3.4. A function f : A −→ B is said to be a trapdoor function if f, f−1 can be
efficiently computed with some extra information (called the trapdoor), but f−1 is infeasible to
compute without this extra information.
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Note, that no trapdoor functions have yet to be proven to exist, but it is widely believed that
the encryption function for RSA (in the next section) has this property. A related concept is a
one-way function.

Definition 3.5. A function f : A −→ B is said to be a one-way function if f can be efficiently
computed, but f−1 is infeasible to compute even with extra information.

A good candidate for such a function, could be the function (p, q) 7→ pq that maps primes to its
product. This relies on the assumption, that factorizing integers into their prime components,
is a hard problem, which it has been believed to be for centuries. Just as an example of the
kind of work necessary to factor large integers, the biggest current factored number of the RSA-
challenge (a number not of any particular form to allow for faster specialized factoring methods)
is RSA-768 consisting of 768 bits [10]. Here a number field sieve was used to filter out obvious
non-prime factor candidates, and quoting ”We spent half a year on 80 processors on polynomial
selection [used to optimize the sieve]. This was about 3% of the main task, the sieving, which
was done on many hundreds of machines and took almost two years. On a single core 2.2 GHz
AMD Opteron processor with 2 GB RAM, sieving would have taken about fifteen hundred years.”

By contrast, the possibly largest number proved to be prime with the popular Elliptic Curve
Primality Proving (ECPP) algorithm, is the so called Mills’ prime, with a ridiculous 20, 562 dig-
its. This was proved on a cluster of six 2.6 GHz Xeon biprocessors running for 68 days[11].

In summary, we present the briefly discussed types of attacks and corresponding notions of se-
curity, along with a few extras. A word of caution here; these definitions are lose translations
of much more rigorous statements from complexity science. The security definitions are vast
simplifications.

Definition 3.6. (Types of Attacks)

1. A ciphertext only attack (COA) tries to find information about a plaintext by making use
a set of ciphertexts.

2. A known plaintext attack (KPA) tries to find information about a plaintext by making use
of a set of known correspondences of ciphertexts and plaintexts.

3. A chosen plaintext attack (CPA) tries to find information about a plaintext by making use
of the encryption function interactively.

4. A chosen ciphertext attack (CCA) tries to find information about a ciphertext by making
use of the decryption function with certain restrictions.

Note that the only difference in (KPA) and (CPA), lies in the ability to generate more ciphertext-
plaintext pairs as the process of attacking goes along. For a public key cryptosystem, (CPA)
security should really be a requirement, as by definition the encryption function is public. How-
ever, this also requires encryption to be probabilistic rather than deterministic, for if not, set
phrases and locations might be easily picked out of the ciphertext. One might also wonder at
what time could possibly a system be under a (CCA) attack? This is a good question, as this
attack model was considered a theoretical cul-de-sac for quite some time, until a sophisticated
attack on SSL was demonstrated as possible in 1998 [12].
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Definition 3.7. (Security of a Cryptosystem) A cryptographic system is said to be

1. (SS) Semantically secure if no polynomial time adversary can attain significant information
about the plaintext of a given ciphertext.

2. (IND) Indistinguishable if any two ciphertexts are indistinguishable to a polynomial time
adversary.

3. (NM) Non-malleable if given a ciphertext of a plaintext any adversary cannot construct
another ciphertext whose plaintext is meaningfully related to the initial one.

4. (IND-CPA) Indistinguishable under a CPA attack if (IND) holds even with full access to
fE .

5. (IND-CCA1) Indistinguishable under a CCA attack if (IND) holds even with access to fD
prior to obtaining two ciphertexts.

6. (IND-CCA2) Indistinguishable under a CCA attack if (IND) holds even with full access to
fD except for on the two ciphertexts to be distinguished.

Indistinguishable here means that ciphertexts cannot be distinguished consistently with a prob-
ability of more than 1/2, by any polynomial time algorithm, and a polynomial time adversary
refers to an adversary that can run any polynomial time algorithm.

Note that (1) and (2) are equivalent definitions (in the sense that (IND−CPA) ⇐⇒ (SS−CPA)
and (IND − CCAi) ⇐⇒ (SS − CPAi) where the SS definitions are similar) as demonstrated
in [9], where other interesting hierarchies and implications of combinations of security notions
are also summarized. IND-CCA2 is effectively the new high standard to strive for in modern
cryptosystems, and there are actually a few cryptosystems that satisfy this.

3.2.1 Rivest-Shamir-Adleman

We start out with the perhaps most well known mathematical cryptosystem, namely RSA.

Definition 3.8. (RSA) Let p, q be two large distinct prime numbers. We compute n = p · q,
an element e coprime with φ(n) and the modular inverse d = e−1 mod φ(n). The RSA cipher
algorithms are the deterministic functions

fE(m) = me mod n,

fD(c) = cd mod n.

We can verify its validity as such [4][p138]

Lemma 3.9. (Validity of RSA) fE = f−1D in Zn.

Proof. We aim to verify that med ≡ (me)d ≡ m mod n for all m ∈ Zn. First let gcd(m,n) = 1.
Since φ(n) | ed− 1, using Euler’s Theorem, we see that med−1 = mkφ(n) ≡ 1 mod n. From this it
is clear that med ≡ m mod n.
Now suppose gcd(m,n) > 1, i.e. m contains p or q as a factor. Without loss of generality suppose
m = pk with gcd(k, q) = 1. Then med ≡ 0 mod p. Now φ(n) = (p − 1)(q − 1) so q − 1 | ed − 1.
Therefore, med ≡ med−1m ≡ m mod q, as gcd(m, q) = 1. Put together the two congruences
med ≡ 0 ≡ m mod p and med ≡ m mod q to get med ≡ m mod n.
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Here n is the public modulus, but it is required that the numbers p, q and φ(n) are kept secret,
because otherwise the private decryption exponent d can be computed via the Euclidean Algo-
rithm. This is RSA in its most basic form, and its security relies on the following two (widely
believed assumptions).

1. Factorization is an intractable problem.

2. fE is a trapdoor function.

It is clear by the above paragraph that inverting fE is at least as easy as factorizing n, but it also
conceivable that it is easier. This is the curse of security proofs.

RSA in this form is deterministic, hence offer no CPA security, and consequently as a public
deterministic system, neither offer semantic security. However, there are other methods to couple
with to achieve this. A method called Optimal Asymmetric Encryption Padding (OAEP) invented
by Mihir Bellare and Phillip Rogaway in 1995 [13] and later refined by Victor Shoup in 2001 [14]
have effectively modernized RSA by adding an element of randomness and proving that RSA with
this system, is actually IND-CCA2 secure. On should note that OAEP follows a specific scheme
that and is intended to work with any trapdoor function, not just RSA’s encryption function.
However, going into the details of this scheme is a bit too peripheral for this report and we will
instead concentrate on some interesting mathematics behind another less known cryptosystem.

3.2.2 Goldwasser-Micali

Finally, we get to play around with an application of quadratic residues. The following cryp-
tosystem was considered the first probabilistic encryption scheme, and it was invented by Shafi
Goldwasser and Silvio Micali in 1982, and we will abbreviate it by GM.

Before we dive into it directly, we will have a brief discussion about the Jacobi symbol. For this
composite n = pq, an integer a is a quadratic residue modulo n if and only if a ∈ Qp ∩Qq, i.e. it
is a quadratic residue with respect to both p and q.

Definition 3.10. (GM) Let p, q be two large distinct prime numbers, and x a quadratic non-
residue modulo both p, q. The public key is (x, n), the private key is (p, q), and the system
operates bitwise via the following probabilistic cipher algorithms on a message m = m1 · · ·mk

here decomposed into k bits.

fE(mi) = r2xmi mod n, for m < n and a random ri ∈ Z∗n.

fD(ci) =

{
0 if ci ∈ Qn
1 if ci ∈ Qn

The definition of x means that the Jacobi symbol
(
x
n

)
=
(
x
p

)(
x
q

)
= (−1)2 = 1. One way to find

such x is to restrict the primes to those satisfying p ≡ q ≡ 3 mod 4, as then x = −1 would satisfy
this by the fourth property of the Legendre symbol.

Lemma 3.11. (Validity of GM) For all mi ∈ Z2 we have fD(fE(mi)) = mi.

Proof. Homemade. Suppose r2xmi ∈ Qn. Then xmi ∈ Qn, and by the property of x, we find(
xmi

p

)(
xmi

q

)
=

(
x

p

)mi (x
q

)mi
= (−1)mi(−1)mi .
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By assumption, both these factors must be 1, so mi is even and ≡ 0 mod 2. The other way is
similar.

Using the private factorization of n = pq, one can quickly determine whether each ciphertext
is a quadratic residue, and in fact, we will describe an algorithm to do so in the next chapter.
However, when the factorization is unknown this is widely believed to be a hard problem, and we
will state it as one of the two assumptions on which the system relies.

1. Factorization is an intractable problem.

2. Determining whether an integer a is in Qn or Qn for n = pq when p, q is not known is an
intractable problem.

The latter is in fact called the quadratic residuosity problem (QRP). In the original paper [20],
a theorem by Rabin states that if for a 1/ log n fraction of the quadratic residues q mod n one
could find a square root of q, then one could construct a probabilistic algorithm to factor n in
polynomial time.

This of course speaks about actually finding the square roots, whereas determining Legendre
symbols, just shows whether or not such a root exists. However, this not a very difficult problem.
In fact, if we know the factorization, and by sticking to the convenient option of letting p and
q be ≡ 3 mod 4, we can actually just plug into the formula x ≡ a(p+1)/4 mod p, do the same
mod q, and use CRT. The general method (for arbitrary primes) is not particulary hard either [3,
pp48-50]. Note that probabilistic here means that the algorithm has a small chance of failing, but
this result it still so significant it is believed that the two assumptions above are of equivalent.

Furthermore, as this system features probabilistic encryption, it satisfies the SS security notion
that was actually proposed by the authors in the original paper. It also satisfies the somewhat
different notion of homomorphic encryption.

Definition 3.12. Encryption in a public key cryptosystem is said to have homomorphic encryp-
tion if there exists a homomorphism Γ : P −→ C in terms of some binary operations ◦P , ◦C .
GM has this property, as given two message bits m1 and m2, the products of the fE(mi) satisfy

fE(m1)fE(m2) = (r21x
m1)(r22x

m2) = (r1r2)
2xm1+m2 = fE(m1 ⊕m2).

Note that unpadded RSA clearly satisfies this as well, but the stronger RSA-OAEP does not
as IND-CCA2 security is equivalent to NM-CCA2 [9]. A homomorphic system is by definition
malleable.

Malleability is often thought of as an undesirable property, as theoretically, this could be used to
flip bits used in money transfers to change the amount of pounds transferred using a so called a
man in the middle attack. However, when the malleability arises from a homomorphism, it could
be useful for certain esoteric applications like electronic voting. See [21] for more information on
this.

Unfortunately, the GM cryptosystem suffer from a couple of serious ailments. Each individual
bit of the message to be encrypted, will be mapped an arbitrary element in Zn. This causes the
ciphertext to be several orders of magnitude larger than the plaintext. This is called message
expansion, and is considered a serious inefficiency trait.
Several others systems have since been invented to try to fix this problem. We will go one of these
that have gained quite a bit of popularly in recent years.
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3.2.3 Paillier

The Paillier cryptosystem was invented in 1999 by Pascal Paillier. This system uses ideas from
a wide range of cryptosystems including RSA and GM, but also other probabilistic systems like
ElGamal . It uses a typical RSA style modulus n = pq, the product of two large primes. Whereas
GM was a probabilistic system based on quadratic residues, Paillier is a probabilistic system based
on nth residues mod n2.

Definition 3.13. An integer z is said to be an nth residue mod n2 if there exists y ∈ Z∗n2 such
that z ≡ yn mod n2.

The main idea, is that it is hard to determine whether an arbitrary element in Z∗n2 is an nth
residue mod n2 without the underlying factorization. This is called the decisional composite
residuosity assumption (DCRA), and Paillier’s original paper clearly explains the different systems
and attempts that led to this idea [5]. We will follow this paper almost entirely in this section,
but also resort to the occasional wiki help - and consequent double checking - to fill in some of the
gaps. To study this system we need to include some more number theoretic results for the special
case of n = pq. First on the list is Carmichael’s theorem, where we improvise a quick proof for
this case.

Theorem 3.14. (Carmichael’s Theorem) Let ω, n be coprime, and λ = lcm(p− 1, q − 1). Then

1. ωλ ≡ 1 mod n

2. ωnλ ≡ 1 mod n2

Proof. (1) It’s clear that ωp−1 ≡ 1 mod p and ωq−1 ≡ 1 mod q. From this we see that ωλ − 1 is
a common multiple of p and q, so ωλ ≡ 1 mod n.
(2) Using (1) we know that ωλ = 1 + kn, for some k ∈ Z, so

ωnλ = (1 + kn)n ≡ 1 +

(
n

1

)
kn ≡ 1 mod n2,

by reducing the binomial expansion mod n2.

To continue, we need to investigate a little bit about the structure of nth residues, in particular
the roots of them.

Proposition 3.15. Let y be an nth residue mod n2 and ω ∈ Z∗n2 such that ωn ≡ y mod n2. Then
the nth roots of y are the elements {(1 + xn)ω mod n2 : x ∈ Zn}, and there is only one such root
smaller than n.

Proof. Since (1 + n)x ≡ 1 + xn mod n2 it is clear that these elements all satisfy (1 + xn)n ≡
1 mod n. We will skip the proof that only these elements satisfy xn ≡ 1 mod n2.
We now find the smallest such solution root. First note that ω ∈ Z∗n2 ⇒ ω mod n ∈ Z∗n. Hence,
we can write ω = a + bn where a ∈ Z∗n, i.e. we can also find a−1 ∈ Z∗n. The desired root is the
root with x ≡ −(a−1)b mod n as then

(1 + xn)ω = (1 + xn)(a+ bn) ≡ a+ (b+ ax)n = a+ (b− baa−1)n = a mod n2.

Since the inverse of a is unique, so is this solution.

Definition 3.16. We define εg to be the map Zn×Z∗n −→ Z∗n2 defined by (x, y) 7→ gxyn mod n2.
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This is going to operate as the encryption function in the Paillier cryptosystem.

Definition 3.17. Let Bα denote the subset of Z∗n2 containing all elements of order nα, and B
denote the union of the Bα for α ∈ {1, . . . , λ}

The number g is called the base, and when the base has one of the allowed orders, we get the
following very interesting relation.

Lemma 3.18. If g ∈ B then εg is a bijection.

Proof. First note that φ(n2) = φ(p2)φ(q2) = p2q2
(

1− 1
p

)(
1− 1

q

)
= nφ(n) using the proven

properties of the Euler function. Consequently, by the very definition of φ, we see that the
domain and range have the same cardinality, so it suffices to show that Bg is injective. Suppose
gx1yn1 ≡ gx2yn2 mod n2. Then

gx2−x1
(
y2
y1

)n
≡ 1 mod n2, (3.1)

so we can invoke Carmichael’s theorem to obtain gλ(x2−x1) ≡ 1 mod n2 by taking λ’th powers on
both sides. Now λ(x2 − x1) must be a multiple of the order of g, and g ∈ B, so n | λ(x2 − x1).
But gcd(λ, n) = 1 as neither p − 1 nor q − 1 can be a factor of n, so we must in fact have

n | (x2 − x1), i.e. x2 ≡ x1 mod n. This also forces
(
y2
y1

)n
≡ 1 mod n2 by 3.1, with the obvious

solution y2 ≡ y1 mod n, and this is the only such solution by 3.15.

Thus, it makes sense to define the class number to be the exponent of the base g.

Definition 3.19. (Class of ω) For g ∈ B and ω ∈ Z∗n2 we define the nth residue class of ω to be
the unique integer x ∈ Zn for which there exists y ∈ Z∗n such that εg(g, y) = ω. Denote this JωKg.

Proposition 3.20. (Class Properties) Let g, gi ∈ B. Then ∀ω, ωi ∈ Z∗n2

1. JωKg = 0⇔ ω is an n-th residue mod n2.

2. Jω1ω2Kg = Jω1Kg + Jω2Kg

3. JωKg1 = JωKg2Jg2Kg1.

4. Jg1Kg2 = Jg2K−1g1 .

Proof. (1) If JωKg = 0 then ω ≡ g0yn mod n2 which implies ω ≡ yn. Conversely, suppose ω is an
n-th residue mod n2, i.e. ω ≡ yn mod n2. Since y ∈ Z∗n2 , it must be of the form y = a+ bn with
a ∈ Zn. Then ω = yn = (a+ bn)n = an mod n2 = g0an, so JωKg = 0.
(2) Given ω1 = gxyn mod n2 and ω2 = gabn mod n2, then ω1ω2 = ga+x(yb)n. Now we can write
a+ x = (a+ x mod n) + cn, so finally

ω1ω2 = ga+x mod n(ybgc)n mod n2.

Evaluating class numbers of these values yield the result.
(3) Given ω1 = ga1b

n mod n2 and g2 = gc1d
n mod n2, we can write ω = gcx1 (dxy)n mod n2. This

implies JωKg1 = cx, JωKg2 = x and Jg2Kg1 = c.
(4) Set ω = g1 in (3) to get Jg1Kg2Jg2Kg1 = Jg1Kg1 = 1 mod n.
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Note (2) is saying that the map (Z∗n2 ,×) −→ (Zn,+), ω 7→ JωKg is a group homomorphism (in
fact this also causes homomorphic encryption). Property (3) says that if you can evaluate the
class number for one particular base g, then you can evaluate it for any other base. This property
is referred to as random self-reducibility, and a physical interpretation of this is that any choice
of g is as good (as hard for an adversary) as any other in terms of g as a public parameter.

These abstract properties can be a bit overwhelming at first, but essentially they are statements
about the equivalence classes of residues. If we were talking about quadratic residues, then there
would only be two residue classes, namely Qn and Qn. For nth residues there are n such classes
(and only one of them corresponds to the case ω is an nth residue) and we can actually show the
correspondence of the class numbers in a more clear way.

Lemma 3.21. ω1 and ω2 lie in the same residue class if and only if ω1ω
−1
2 is an nth residue mod

n2

Proof. Homemade proof. Let g ∈ B. Translating this statement in the language above we
need to show Jω1ω

−1
2 Kg = 0 ⇐⇒ Jω1Kg = Jω2Kg. First note that if ω = gryn mod n2 then

ω−1 = g−r(y−1)n mod n2. Thus Jω−1Kg = −JωKg. Now Jω1Kg = Jω2Kg ⇐⇒ Jω1Kg − Jω2Kg = 0
and this last expression is Jω1Kg + Jω−12 Kg = Jω1ω

−1
2 Kg.

Definition 3.22. We define the subset Sn = {u < n2 : u ≡ 1 mod n} of Z∗n2 , and on it, a map
L : Sn −→ Zn, u 7→ u−1

n .

It’s clear that Sn is in fact a subgroup, and that the L map is well defined on it. More interestingly,
this map has the following abstract property relating what we have worked on so far.

Lemma 3.23. ∀ω ∈ Z∗n2 L(ωλ mod n2) = λJωK1+n

Proof. It’s clear that 1+n ∈ B so by the bijectivity of εg there exists a unique pair (a, b) ∈ Zn×Z∗n
such that ω = (1 + n)abn mod n2. Consequently ωλ ≡ (1 + n)aλ ≡ 1 + anλ mod n2, and thus

L(ωλ mod n2 = aλ = JωK1+nλ.

We are almost done. But before we state what our decryption function is, we first state the
definition of the full system, so that the calculation makes sense.

Definition 3.24. (Paillier) Let p, q be two large distinct prime numbers, and g ∈ B be an
arbitrary base for n = pq, and λ = lcm(p − 1, q − 1). The Paillier cryptosystem has public key
(g, n) and private key λ, and operates via the following probabilistic cipher algorithms.

fE(m) = gmcr, for m < n and a random r < n.

fD(c) = L(cλ mod n2)
L(gλ mod n2)

for c < n2.

Lemma 3.25. fD(fE(m)) = m on Zn
Proof. Using property (4) of the class number we have JgK1+n = J1+nK−1g mod n. Now λ is coprime

to n and hence invertible, so in fact the whole L(gλ mod n2) = λJgK1+n is invertible. Thus the
decryption function is well defined and it evaluates at

L(ωλ mod n2)

L(gλ mod n2)
=
λJωK1+n
λJgKn+1

= JωK1+nJ1 + nKg = JωKg mod n.
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Clearly, knowledge of the factorization of n can make you break the system, as does being able
to evaluate class numbers efficiently. These are our only two assumptions however.

1. Factorization is an intractable problem.

2. Determining the class number of an element is an intractable problem without knowing p, q.

Under these assumptions the system satisfies IND-CPA security [5, p7]. The homomorphic prop-
erty means that we will not be able to enjoy the higher IND-CCA2 tier of security. This is
because of the aforementioned equivalence between the two notions IND-CCA2 and NM-CCA2,
and because Paillier is a homomorphic scheme.

Paillier also benefits from the interesting self-blinding property. In particular, two ciphertexts
can be publicity changed into another without changing its plaintext. This is also a desirable
property of voting and money transactions, where one would like methods of ensuring validity of
such an action, but not implicity disclosing the identity of the person to whom it belongs. To see
that this property holds, consider a random r < n. Then we can scale the ciphertext by rn in Zn2

as fD(fE(m)rn mod n2) = m by noting that the scaling does not change the base exponent, and
hence not the class number.

3.3 Key Exchange

As a more practical segment about the usefulness of public key cryptography, consider the follow-
ing. Two parties wanting to communicate, can with one of the above ciphers both create a public
key, send these to each other and communicate securely under simple assumptions. In practice,
public key ciphers are often slower than their symmetric counterparts [3]. As a consequence, sym-
metric cihpers are often used after having simply received a symmetric key securely by another
method. One obvious such method, is to send it via a public key system, but there is another
mathematically pleasing way, of doing so.

3.3.1 Diffie-Hellman

Definition 3.26. (DH Key Exchange) Let g be a generator of Fq, and A and B denote the two
communicating parties. The key exchange procedure works as follows,

A finds a random element a ∈ F∗q , computes ga and sends (g, ga, q) to B.

B finds a random element a ∈ F∗q , computes gb and sends (gb) back to A.

Both A and B can now compute the secret key k := gab

We choose g to be a generator, as this allows g to run through any element of F∗q , and ensures
more randomness of the key. One is tempted to think that, surely it is possible to derive the key,
when almost all the information have crossed paths like this, and of course, it is. The problem is
that it is really hard to do so.

Definition 3.27. (Diffie-Hellmann assumption) In Fq, it is computationally infeasible to compute
gab knowing only ga and gb.

It is widely believed that this is as hard as computing discrete logarithms (i.e. finding a from
ga in a finite field) [3, pp98-99]. Clearly, a method for solving discrete logs efficiently would also
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violate the DH assumption.

A successful implementation of this ensures that in many secure encounters with cryptography
online, you will have generated keys you are not even aware of. The system can essentially run
itself between two parts that support this protocol.

3.4 Extra Considerations

In practice, there are more things to consider, than what cipher to use, and what key length to
use for this cipher. A big problem on the internet is to prove that the person you are talking to,
or sending your information to, really is who or what he claims to be. Another, is the possibility
of tampering.

3.4.1 Authenticity & Integrity

If a message was intercepted, tampered with, and then forwarded to you. Determining this, is
determining message authenticity, and is in practice solved by a message authentication code
(MAC). This also solves the other problem of integrity.

One method is utilizing a type of one-way function H called a hash function, that is applied to the
plaintext, and sent along with the message in the form of the pair (c, h) = (fEA(m), fDB (H(m))).
Here the message is encrypted with the public key of the recipient, but the hash is decrypted
(we say the message is signed) with the private key of the sender. In certain cryptosystems like
RSA (although the original is not the best for this particular implementation [25]) fE = f−1D and
encryption of a decrypted message, is inherently just a different form of decrypting encryption.
The receiver can verify (with the senders public key) that fEB (h) = H(fDA(c)), i.e. the hash that
was encrypted with the senders private key is the same as hash from the decrypted message.

This works because an interceptor can change the first parameter and generate a new hash value
accordingly (as the senders public key, and the hash function is assumed to be known), but they
do not possess the sender’s private key and the hashes will disagree in the verification stage.

The soundness of this construction notwithstanding, this process is typically verified using a hash
function relying on a shared secret key. For with such a system, a man in the middle cannot alter
the hash without the secret key, and the extra layer of encryption is redundant. The message is
authenticated if and only if the hash corresponds to the hash of the received decrypted message.
One typical such construction is the Keyed-Hash Message Authentication Code (HMAC) [7], [27].
In the case of, for instance, an electronic transaction, then the server must prove its authenticity
to you. This is commonly done the Secure Sockets Layer protocol. If the server has an SSL
certificate issued by a third party (whose identity can be determined by in the browser), the
authenticity of this certificate can be verified live by an encryption with the issuers public key.
This procedure is similar to the one described above.
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Chapter 4

Key Generation

4.1 Pseudo-Random Number Generators

The process of actually implementing a cryptographic system on a computer is an intricate and
interesting problem. The seemingly innocuous statement that ”pick a random r < n”, can have
widely different interpretations about what is good practice for this. After all, the entire crypto-
graphic model that we assume, that a system can be only be broken after an infeasible amount
of computation, only holds if the pool of numbers we are generating from, cannot be exhausted
faster than this computation. This is the notion of entropy of pseudo-random number generator
(PRNG).

A PRNG is found in every basic programming language, but the very basic implementations
of such generators often show significant statistical patterns, that would combined with cryp-
tographic use be a major security flaw. Thankfully, there are more secure solutions made for
cryptographic implementation. Thus, it is of the utmost importance that these are used. Unfor-
tunately, this is not always the case [16].

4.1.1 Blum-Blum-Shub

In more recent texts [7] PRNGs are given the same rigorous treatment as you would expect from
any other area of cryptography. A good PRNG is defined as one that cannot be distinguished
from a truly random source in polynomial time. One example would be the Blum-Blum-Shub
algorithm which is defined by xk+1 ≡ x2k mod n for n = pq, and the output would be the least
significant bit of this calculation. Here we require p ≡ q ≡ 3 mod 4 which ensures that each
quadratic residue has exactly one square root that is also a quadratic residue (see [26] for a proof
of this). Since determining modular square roots is hard (as discussed in the Goldwasser-Micali
section), this PRNG actually has a security proof, related to the hardness of integer factorization.
However, we will not go into more details on this.

4.2 Tests for Primality

As we saw in the last chapter, all the cryptosystems we discussed relied on primes for strong
security (although this is not always the case). Thus, it is important that we are able to generate
new large primes for each encounter. We generally follow [2, pp85-94] for the rest of this chapter.
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The typical mental way of determining if a number is prime, is by checking if it has any divisors
in the set of prime numbers smaller than

√
n. A simple algorithm for checking this for an integer

n, can be written as follows.

1 i ← 2;
2 while i2 ≤ n repeat;

3 if i divides n then return false;

4 i ← i+ 1;
5 return true;

This cycles through all the divisors (not just primes here for algorithm simplicity) and returns
false if we found a divisor, or eventually true by exhausting the pool of integers. Since we have
to expect to exhaust the pool to find a prime, this algorithm runs in O(

√
n), i.e. exponential time.

The reason for its horrific speed, is that it actually does much more than is required; it reveals
the factorization of n. As this is believed to be an intractable problem, we cannot realistically
expect such an algorithm to ever operate efficiently. We therefore go through some interesting
and unexpected ways, to check if a number is prime in polynomial time.

As an introduction, the first method that perhaps comes to mind is to test whether Fermat’s little
theorem holds. For if n is prime, then an−1 ≡ 1 mod n for all a, so by testing a large amount of
elements a ∈ Zn perhaps this would be enough to show n is prime. The process of doing so is
called Fermat testing the number, and in most cases this works quite well. For most n it will give
you a false positive (called an F-liar) for at most half of the a values [2]. We prove the following.

Lemma 4.1. Let n ≥ 2 be an integer. If an−1 ≡ 1 for all a ∈ Zn, then n is prime.

Proof. Note that ar ≡ 1 for some r ≥ 1 implies that a has an inverse, namely ar−1. Thus, if an−1

mod n = 1 for all non-zero a ∈ Zn, then Z∗n = Zn \ {0}, and so φ(n) = n− 1.

This means there will always be some F-witnesses for an odd composite number n, and the test
will succeed. In fact, the n − 1 − φ(n) elements of {a ∈ Zn : gcd (a, n) > 1} cannot satisfy an−1

mod n = 1. Unfortunately, this set sparse when n has few prime factors. For example, if n = pq
where p and q are distinct primes, then there are exactly p+ q − 2 such numbers in Zn.

To make matters worse, there are pathological cases where n is not prime, but one receives a
false positive for every number in Z∗n (see for instance [3, pp126-129]). Such a number is called
a Carmichael number, and for certain such numbers the proportion of invertible elements can be
very large. For instance, the Carmichael number n = 651693055693681 has φ(n)/n > 0.99996 [2].
For this reason the Fermat test cannot be relied upon in general, without actually testing all the
values.

4.2.1 Soloway-Strassen

The perhaps most surprising algorithm is the one developed by Robert M. Solovay and Volker
Strassen, based on the theory of quadratic residues. Following [2, pp85-94] in this section, we
begin by a quick guide to the quadratic reciprocity law that we proved earlier for the Jacobi
symbol. If given an odd integer n ≥ 3 and an integer a, then we can perform a systematic
reduction of Jacobi symbol

(
a
n

)
by the following key steps.
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1. If a is not in the interval {1, . . . , n− 1} the result is
(
a mod n

n

)
.

2. If a = 0 the result is 0.

3. If a = 1 the result is 1.

4. If 4 | a the result is
(
a/4
n

)
.

5. If 2 | a and n ∈ {1, 7}, the result is
(
a/2
n

)
.

6. If 2 | a and n ∈ {3, 5}, the result is −
(
a/2
n

)
.

7. If (a > 1 and) a ≡ 1 or n ≡ 1 (mod 4), the result is
(
n mod a

a

)
8. If a ≡ 3 and n ≡ 3 (mod 4), the result is −

(
n mod a

a

)
This procedure can be followed directly, stopping only once the numerator becomes 0 or 1, or we
can convert this into a more streamlined computer algorithm following this procedure.

Input: Integer a, odd integer n ≥ 3.
Output:

(
a
n

)
Method:

0 b,c,s: integer;

1 b ← a mod n; c ← n; s ← 1;
2 while b ≥ 2 repeat

3 while 4 | b repeat b ← b/4;
4 if 2 | b then

5 if c mod 8 ∈ {3, 5} then s ← (−s);
6 b ← b/2;
7 if b = 1 then break;

8 if b mod 4 = c mod 4 = 3 then s ← (−s);
9 (b, c) ← (c mod b, b);
10 return s · b;

A quick run through these lines reveal that s keeps track of all the sign changes from the
(
2
p

)
rule

in line 5, and the quadratic reciprocity law usage in line 8. On a computer, division, or checking
divisibility by 2 or 4, can be done by simply treating the binary representation as a string, and
check for, or remove trailing zeroes.

Interestingly, the outer while loop behaves like the Euclidean Algorithm, in that by taking the
residues of the opposite inputs, the generated decreasing sequence must terminate in 2‖n‖ =
O(log n) steps. Since the only expensive operations found herein is division with remainder, the
Jacobi Algorithm also runs in O((log n)2) bit operations, exactly like the Euclidean Algorithm -
truly an amazing consequence of the quadratic reciprocity law.

The following trivial lemma, will form the basis for the primality test.

Lemma 4.2. If p is an odd prime number, then for all a ∈ Zp

a(p−1)/2 ·
(
a

p

)
mod p = 1. (4.1)
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Proof. By Euler’s Criterion, the two factors are either both 1 or −1.

Using the contrapositive turnaround of this, we get that if n ≥ 3 is odd and a ∈ Zn does not
satisfy this identity, then n cannot be prime. This leads to the essential question: how likely is
it for a composite number to pass this test? To answer this question accurately, we will need a
little group theory.

Definition 4.3. Let n be an odd composite number, then a ∈ Zn is called an E-witness for n if
the identity 4.1 is satisfied. a is called an E-liar otherwise.

Lemma 4.4. Let n ≥ 3 be an odd composite number. Then the set of E-liars for n form a proper
subgroup of Z∗n.

Proof. If a ∈ Zn an E-liar, then 4.1 holds and
(
a
n

)
∈ {±1} (i.e. not zero), so

12 =
(

(a(n−1)/2
(a
n

))2
= an−1 = 1 mod n,

So a is also an F-liar. Consequently, a−1 = an−2 so a is an invertible element.
We show the liars form a subgroup. Clearly 1 is an E-liar, so suppose a, b ∈ Z∗n are two E-liars.
Then

(ab)(n−1)/2
(
ab

n

)
= a(n−1)/2

(a
n

)
b(n−1)/2

(
b

n

)
= 1 · 1 = 1,

so ab is another E-liar. The hard part is showing that the set of E-witnesses in Z∗n is non-empty.
Consider first the case when n is square free, and we can write n = mp for an odd p - m and an
odd m ≥ 3. We let b ∈ Qp. Now use CRT to obtain a solution a to the congruences a ≡ b mod
p and a ≡ 1 mod m. Since this a is not divisible by p and is coprime to m it must actually be in
Z∗n. Now the symbol can be evaluated(a

n

)
=

(
a

p

)( a
m

)
=

(
b

p

)(
1

m

)
= (−1) · 1 = −1.

On the other and if a(n−1)/2 ≡ −1 mod n then this would mean a(n−1)/2 ≡ 1 mod m, a contra-
diction. Thus, 4.1 is violated and a is an E-witness.

In the second case, suppose there exists a prime p such that p2 | n. Then if we let a = (1 + n
p )

it is clear from the binomial theorem that ap = 1 mod n so that a is invertible, and in particular
the order of a is p. Thus an−1 6= 1 mod n since p - n− 1. On the other hand, the symbol satisfies(a

n

)
=

(
1 + n/p

n

)
=

(
1 + n/p

p

)(
1 + n/p

n/p

)
=

(
1

p

)(
1

n/p

)
= 1,

so 4.1 does not hold in this case either.

Solovay-Strassen Test

1 while (l > 0)
2 Let a be randomly chosen from {2, . . . , n− 2};
3 if (a(n−1)/2 ·

(
a
n

)
mod n 6= 1) return false;

4 l ← l − 1;
4 return true;
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This returns false if identity 4.1 is not satisfied for some a ∈ Zn \ {±1}, which only happens if
we found an E-witness for n. This test uses the above Jacobi algorithm for the symbol, and it is
repeated a fixed amount of times l large enough so that we can with reasonable faith believe the
true result. Note also that the l does not depend on n and can technically be dropped from the
complexity bound below.

Lemma 4.5. The Solovay-Strassen test runs with complexity O(l(log n)3) and outputs false when
n is composite, and true when n is prime or n is composite with the latter case happening with a
probability smaller than 2−l.

Proof. Since the E-liars for n form a proper subgroup of Z∗n, this means that the probability
of getting a false positive is less than (φ(n)/2)/φ(n) = 1/2. Thus, running the algorithm for l
iterations ensure a failure probability < 2−l, and depending only on the Jacobi symbol algorithm
and fast modular exponentiation, this test can be achieved in O(l(log n)3) bit operations.

4.2.2 Miller-Rabin

The following test is largely considered the successor of Soloway-Strassen, and is it relies heavily
on a special case of the very simple Lemma 2.24, namely; a2 ≡ 1 mod p if and only if a ≡ ±1. This
means, that if we find a non-trivial square root of unity modulo n, then n is certainly composite.

What leads to the great discovery here, is the fact that we are only interested in an odd n ≥ 3,
so we decompose n − 1 = u2k for some odd u, and some k > 0. With this decomposition, we
see that an−1 ≡ (au)2

k
mod n. Now consider the possibility that n is prime. By generating the

numbers {(au)2
i}ki=0, we should expect the last value to be 1, as otherwise a is an F-liar for n.

More importantly, if the sequence does not start with a 1, then the first 1 should be immediately
preceded by −1 ≡ n − 1, as otherwise there exists a non-trivial square root of unity. Putting
these two observations together, it suffices to check that if the sequence does not start at 1, then
it must contain n− 1 at some point before k. This is going to be the condition to check for, and
the formal definition goes as follows.

Definition 4.6. Let n ≥ 3 be odd, and write n − 1 = u2k, for some odd u, and some k > 0. A

number a ∈ {1, . . . , n− 1} is called an A-witness for n if au 6= 1 mod n and au
2i 6= n− 1 mod n

for all i ∈ {0, . . . , k}. If n is composite and a is not an A-witness for n, then a is called an A-liar
for n.

Like for Soloway-Strassen, we create a more complete version of the algorithm from [2] to perform
the test.

Miller-Rabin Test

1 Decompose n− 1 = u2k;
2 while (l > 0)
3 Let a be randomly chosen from {2, . . . , n− 2};
4 b ← au mod n;
5 if b /∈ {1, n− 1} then

6 while (k > 1)
7 b ← b2 mod n;
8 if b = n− 1 then break;

9 if b = 1 then return false;

10 k ← k − 1;
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11 if k = 1 return false;

12 l ← l − 1;
13 return true;

The decomposition in line 1 can, as noted earlier, be performed quickly by slashing trailing zeroes
in the binary expansion of n−1. The test at line 5 investigates whether the initial sequence value
will lead to any information at all. If it does, then we enter the squaring loop, and if at any point
in the sequence we get n − 1 before a 1, we drop out of the squaring loop as a has passed the
test. However, if we obtain a 1 first, then there exists a non-trivial square root of 1, so a is an
A-witness for n. If we run through the entire squaring loop, and have not gotten n− 1 (or found
a witness) before k has reached 1, then the remain cases indicate that n is composite. To see this,
simply consider the possibilities. If the last iterate is not 1, a is an F-witness, on the other hand,
if the last iterate is 1, then au2

k−1
is a non-trivial square root of 1, and a is an A-witness.

This algorithm also runs through l different of values a to test for, and the belief is that having
passed the test for all the l random values, should strongly indicate that n is prime. The question
again, is how strong is the error bound. By checking both the Fermat condition, and the square
root condition, we should expect a result as least as strong as Soloway-Strassen. It turns out,
that the chance of getting a false positive is actually less than 4−1. Regrettably, the proof of
this is convoluted, and does not contribute much to this section. One version can be found in [3,
pp130-134] however, and why yes, it does require 5 pages.

An interesting fact about Miller-Rabin, is that it was originally constructed by Gary Miller as a
deterministic primality test - now referred to as Miller’s test. The difference in the original version
was that under the assumption of the General Riemann Hypothesis (GRH) [2], there is an explicit
upper bound on the smallest A-witness at 2(log n)2. This means, that if we run the test for all
a ∈ {2, . . . , 2(log n)2}, then getting the result true, means that either n is prime, or that GRH is
false. This combined with an error bound twice the size of Soloway-Strassen, is why Miller-Rabin
is one of the most trusted primality testing algorithms in cryptography (see for instance [25]).

Miller’s test was later converted into a probabilistic version by Michael O. Rabin, and it is es-
sentially much faster. Instead of going all the way up to 2(log n)2, we can simply stop at 27,
a number which will ensure a failure probability smaller than 4−27 ≈ 10−18. This is one in a
billion billion, so if we pick two completely arbitrary inhabitants of China, the error probability is
smaller than you actually guessing these two. This should be sufficient for most practical purposes.

Miller-Rabin runs in O(l(log n)3) bit operations by noting that the most expensive operation is
fast modular exponentiation in line 4, with cost O((log n)3), and that squaring in the k loop
is performed for k ≤ log n times with a cost of O(k(log n)2) = O((log n)3). The conditionally
deterministic version, thus runs in O((log n)5).

There is also a sequence dedicated to this at [24], which lists the smallest odd number for which
Miller-Rabin primality test on bases ≤ nth prime fails. As expected, it is a rapidly growing se-
quence.

As a summary to this section, we present the following theorem.

Theorem 4.7. The Miller-Rabin test runs with complexity O(l(log n)3) and outputs false when
n is composite, and true when n is prime or n is composite with the latter case happening with a
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probability smaller than 4−l.

4.2.3 Agrawal-Kayal-Saxena

A newcomer in the field of primality testing is the 2002 AKS algorithm. This is much more
complex to discuss, so we will simply note one of the key lemmas being used for testing; a familiar
lemma usually only seen in one direction. Here it swings both ways.

Lemma 4.8. Let n ≥ 2, and a < n be two coprime integers. Then
n is prime ⇐⇒ (X + a)n = Xn + a in Zn[X]

Proof. Using the Binomial Theorem, we know

(X + a)n = Xn +
∑

0<i<n

(
n

i

)
aiXn−i + an.

(⇒) Suppose n is prime. Then for 1 ≤ i ≤ n− 1 the binomial coefficient(
n

i

)
=
n(n− 1) · · · (n− i+ 1)

i!

is divisible by n as the numerator is, but not the denominator. So in Zn[X] all these coefficients
vanish, and so there are no cross terms. Fermat’s little finishes this implication by showing an = a.
(⇐) Suppose n is not a prime number. We can then find a factor p < n of n and some s ∈ N such
that ps | n, but ps+1 - n. We will show that the coefficient of Xn−p does not vanish, contradicting
the congruence. This coefficient is(

n

p

)
ap =

n(n− 1) · · · (n− p+ 1)

p!
ap.

In the numerator, n is divisible by ps, so the other factors must be relatively prime to p. The
denominator is divisibly by p, so

(
n
p

)
is not divisibly by ps. Now a and p were coprime, so p does

not divide ap. Thus the coefficient for Xn−p is not divisibly by ps and is thus not a multiple of
n.

The significance of this algorithm, is that it proves unconditionally, that a prime status can be
deterministically proven in polynomial time. Unfortunately, with simple multiplication methods,
the algorithm has only a proven complexity bound of O((log n)16.5). However, this has been
lowered in recent years to O((log n)6+ε) [28], but it is unclear at what point this starts to become
efficient.

4.3 Last Words

Having gone through quite a few methods and ideas behind what today constitutes modern cryp-
tography, we hope this text has been interesting and have piqued your interest in cryptography
accordingly. This is by no means an exhaustive list, but it goes through what we consider to be
the most important ideas. We also believe that the recent Paillier cryptosystem can help provide
greater security and anonymity in electronic encryption, in particular in voting applications.

These systems have helped simplify our lives, and go about almost without any notice at all. In
that sense, it is a perfect scientific invention, and it should not be taken for granted.
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